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ABSTRACT: The Inductance of an infinite triangular network of identical inductor is investigated within the frame work of the 

lattice Green's function. This work deals with two cases: perfect and perturbed lattices.  In this paper a connection is made 

between the inductance and the lattice Green's function of the perturbed network. The lattice Green's function and the 

inductance of the perturbed lattice are presented in terms of unperturbed (perfect) lattice by solving Dyson's equation.  
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1. INTRODUCTION 
The lattice Green's Function plays an important role in the 

study of solid state physics and condensed matter physics, 

especially when impure solids are studied [1]. Green's 

Function is used in classical field theories, quantum 

mechanics, as well as, quantum field theories. It is an 

example of a mathematical problem in quantum theory whose 

essence is solving linear operator equation with given 

boundary conditions. Green was the first physicist who built 

the basic concepts of Green’s function in potential theory. 

Green's work was set to solve Laplacian's and Poisson’s 

equations with variant boundary conditions [2]. Lattice 

Green’s function also arises in the study of statistical 

mechanics of spherical model [3]. 

Maradodin [4] showed that the lattice Green’s function for 

the body centered cubic at the origin can be expressed as a 

product of complete elliptic integrals of the first kind. 

Horiguchi and Morita [5] presented a recurrence relation for a 

simple cubic lattice connecting the lattice greens function and 

its first derivative in term of energy band. 

Complex temperature singularities of this system were 

studied by Barton [6]. Recently Greens function is one of the 

most important concepts in many aspects of physics, as many 

quantities in solid state physics can be expressed in terms of 

the lattice green's function and is widely used in the literature 

[7]. 

A great deal of research has been done on lattice Green's 

function over the last fifty years or so. 

The lattice Green's function for a body centered cubic lattice 

with isotropic nearest neighbor interactions can be evaluated 

exactly in terms of complete elliptic integrals [8]. Also, the 

lattice Green's function is used to find the inductance of an 

inductor network [9, 10] and it was used to find the 

capacitance of a network of capacitors [11]. Cserti [9] 

introduced an alternative method based on lattice Green's 

function rather than using the superposition distribution of 

current distribution. The Green's function given in Morita's 

[12] obtained the inductance formulas for the inductance of 

the square and simple cubic lattices. The inductance between 

arbitrary nodes in an infinite network of inductors is studied 

when the network is perturbed by removing one bond 

(inductor) from the perfect lattice [10], where the inductance 

in a perturbed lattice is expressed in terms of the inductance 

in a perfect lattice. Wu  [13] presented a new formulation of 

resistors network which leaded to an expression of the 

effective resistance between any two nodes in any network, 

which can be either finite or infinite in terms of the 

eigenvalues and eigenfunctions of the Laplacian matrix 

associated with the network. He obtained explicit formulae 

for the resistance in one, two and three-dimensions under 

various boundary conditions. Asad, et al., [11] investigated 

many perfect infinite lattices of identical capacitors using the 

lattice Green's function 

Hijjawi et al., [14] calculating the capacitance of infinite 

networks when the network is perturbed by removing one 

bond from the perfect lattice. More recently, Asad, et al., [15] 

investigated infinite networks of identical capacitors using 

the superposition principle and charge distribution. Finally, 

Cserti, et al., [7] obtained the electric resistance between two 

arbitrary nodes on any infinite lattice structure of resistors 

that is periodic tilling of space.  

This paper presents a formalism of the lattice Green's 

function and the inductance of the perturbed infinite 

triangular network. Two perturbed cases are considered: 

substitutional single inductance, and single broken bond 

(missing bond) inductance.   

The remainder of this paper is organized as follows: Section 

two is devoted the formalism, which includes the derivation 

of the formulae that relate the inductance in perfect infinite 

triangular networks of identical inductors to the lattice 

Green's function. In section three we presented the formalism 

of the lattice Green's function and the inductance of the 

perturbed infinite triangular network. In section four, the 

results of this work are discussed .Finally; the conclusions are 

presented in section five.  

2.  Perfect Triangular Lattice Using Dirac Vector 

Notation 

Consider an infinite triangular network of identical inductors 

L. We wish to calculate the inductance between two arbitrary 

lattice points of infinite triangular lattice.  

We denote the current that can enter at site  ⃗  by   
  

  
( ⃗ ) 

 and the potential at site  ⃗  will be denoted by   ( ⃗ ) , we 

have, by combination of Ohm’s and Kirchhoff’s law’s, 

∑  ( ⃗   ⃗ )    ( ⃗ )   ( ⃗   ⃗ )
 
     

  

  
( ⃗ )     (2.1) 

If we let   ⟩  basis vector associated with the lattice point  ⃗  
,then 
  

  
( ⃗ )  ⟨ |

  

  
⟩  ( ⃗ )  ⟨   ⟩                      (2.2)  

forms a complete orthonormal set  We assume that   ⟩ and 

∑   ⟩⟨      i.e.  ⟨   ⟩   ( ⃗   ⃗ )   (   )   In the lattice 

basis ,the vector   ⟩  and |
  

  
⟩ are 
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  ⟩  ∑   ⟩⟨   ⟩  ∑   ⟩  ( ⃗ )                             (2.3)  

|
  

  
⟩  ∑ | ⟩ ⟨ |

  

  
⟩  ∑

  

   ( ⃗ )                      (2.4) 

Eq.(2.1) becomes 

∑ ⟨     ⟩   ⟨   ⟩  ⟨     ⟩   ⟨ |
  

  
⟩   

  

                                                                 (2.5) 

or 

∑ ∑ *⟨     ⟩⟨   ⟩   ⟨   ⟩⟨   ⟩  ⟨     ⟩⟨   ⟩   
  

 ⟨ |
  

  
⟩  +                            (2.6)                       

Eq.(2.6) can be written as  

∑ ∑ *                     ⟨ |
  

  
⟩  + 

          (2.7)

   

where we have used 

 ( ⃗ )  ⟨   ⟩  ∑ ⟨   ⟩⟨   ⟩  ∑      ( ⃗ )   

                                                   (2.8) 

and 

 ( ⃗   ⃗ )  ∑        ( ⃗ )                        (2.9) 

Multiply both sides of Eq  (2.7) by ∑   ⟩ , we have 

∑ ∑ ∑ [  ⟩                   ]⟨   ⟩ 
        |

  

  
⟩  

                                                 (2.10) 

In the Dirac vector space notation Eq . (2.10) ,is  written as 

    ⟩    |
  

  
⟩                                     (2.11) 

Where   is called Laplacian operator of the perfect lattice 

[9, 10, 17].  

    ∑ ∑ ∑   ⟩[                   ]⟨   
        

                                                 (2.12) 

   {
  
 
 

     
   

        
        

             (2.13)  

Now, one can solve Eq.(2.11), formally as 

  ⟩      
  |

  

  
⟩                                    (2.14) 

The lattice Green's function is defined by 

(Economou,2006) 

            

                       (2.15) 

Eq(2.14)becomes 

  ⟩     |
  

  
⟩                                                   (2.16) 

We need to calculate the inductance between the sites  ⃗  

and  ⃗   we assume that the current 
  

  
 enters at site  ⃗  and -  

  

  
 exits at site  ⃗  and the current is zero at all other sites. 

Hence, the current at lattice point  ⃗  is written as  
  ( ⃗ )

  
 

  

  
(         )                                       (2.17) 

                       
 

 The potential at lattice site  ⃗  can be found by substituting 

Eq.(2.17), into Eq.(2.16), we get 

 ( ⃗ )  ⟨   ⟩  ⟨ |  |
  

  
⟩

  ∑ ⟨      ⟩ ⟨ |
  ( ⃗ )

  
⟩

 
 

            
  

  
[  (   )    (   )    

                                                               (2.18) 

Where   (   )  ⟨      ⟩    ( ⃗    ⃗ ) 

The inductance between the sites  ⃗  and  ⃗  is  

  (   )  
 ( ⃗ )  ( ⃗ )

  

  

                     (2.19) 

Substituting Eq.(2.18), into (2.19), we get 

  (   )   [  (   )    (   )    (   )    (   )  
                                                                    (2.20) 

But   (   )    (   ) from diagonal, and   (   )  
  (   ) from symmetry 

In general, for a prefect lattice the inductance in terms of 

  between the sites  ⃗  and  ⃗  can be written as 

  ( ⃗   ⃗ )    [  ( ⃗   ⃗ )    ( ⃗   ⃗ )]      (2.21) 

 

  (   )    [  (   )    (   )                         (2.22) 

The final expression of the inductance between the origin 

and lattice point  ⃗  (   ) in the triangular infinite lattice 

is 

  (   )   ∫
   

  

 

  
∫

   

   

 

  

    (       )

∑ (       )
 
   

          (2.23) 

3. Substitutional single inductance in a perfect Lattice  

In this section, we use Green's function technique to 

determine the inductance for the so-called perturbed lattice 

that is obtained by replacing one inductance by another 

(substitutional inductance) in the perfect lattice. As an 

example (see figure1), consider the infinite triangular 

arrays of identical inductance L. 

Replacing the inductance between sites  ⃗   and  ⃗  in a 

perfect lattice by the substitutional inductance       

results in a perturbed lattice, where α is a positive number. 

Then the question is how one can find the effective 

inductance between two arbitrary sites. It is simple to find 

the effective inductance across the substitutional 

inductance. However, this inductance equals the parallel 

resultant of the substitutional inductance and the effective 

inductance across the missing bond( ⃗    ⃗  ). The current 

contribution   ( ⃗  ) and    ( ⃗  ) at site  ⃗   due to the bond 

( ⃗    ⃗  ) before and after the inductor replacement 

respectively, are given  

 
  ( ⃗ )

  
  

 ( ⃗   ⃗  ) ( ( ⃗  )   ( ⃗  ))   ( ⃗   ⃗  )( ( ⃗  )   ( ⃗  ))         

                                                                            (3.1) 

And 

 
   

  
( ⃗ )  

 
  ( ⃗⃗⃗ )

  

  
  

 
  ( ⃗⃗⃗ )

  

 
       

 
 

 
 ( ⃗   ⃗  )[ ( ⃗  )   ( ⃗  )]  

 

 
 ( ⃗   ⃗  )[ ( ⃗  )  

 ( ⃗  )]                                                                  (3.2) 

due to replacing L by L = L . The net contribution of 

the current at site  ⃗  is 
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Figure (1) 
 

Figure 1:.  Perturbation of a triangular lattice of identical inductors L by replacing the inductance  

between  ⃗   and
 
 ⃗  by inductance L . 

 

  
  ( ⃗ )

  
   

   ( ⃗ )

  
   

  ( ⃗ )

  
                    

=
(   )

 
* ( ⃗   ⃗  )[ ( ⃗  )   ( ⃗  )] ( ⃗   ⃗  )[ ( ⃗  )  

 ( ⃗  )]+                                                                 (3.3) 

  Using  ( ⃗   ⃗  )  ⟨   ⟩ and  ( ⃗  )  ⟨   ⟩ 
 
we obtain 

 
  ( ⃗ )

  
  

(   )

 
[⟨    ⟩(⟨    ⟩  ⟨    ⟩)  ⟨    ⟩(⟨    ⟩  

⟨    ⟩)                                            (3.4)           ⟨      ⟩ 
Where the operator     is the perturbation part arising from 

the substitutional inductance. In fact    is given by 

   
(   )

 
(   ⟩     ⟩)(⟨    ⟨   )      ⟩⟨    

                                                   (3.5) 

Where 

  ⟩     ⟩     ⟩    ,⟨   ⟨    ⟨      and   
(   )

 
                                             (3.6) 

                                                                              (3.6)  

is the projection operator and (   ⟩     ⟩)(⟨    ⟨   ) for 

the bond (     ) and  ⃗  , now replace the inductance 

between ⃗  , then the current in the perfect lattice by L . 

 Now, replace the inductance between  ⃗  and  ⃗   in 

the perfect lattice by  , then the current 
  

  
( ⃗ ) at site  ⃗   is 

given by  

(    )( ⃗ )   
  ( ⃗ )

  
   

  ( ⃗ )

  
                          (3.7) 

 Substituting of Eq.(3.4) in Eq.(3.7) together with Eq.(2.2) 

gives 

 ⟨      ⟩  ⟨      ⟩  ⟨ |
  

  
⟩                         (3.8) We 

may write 

(     )  ⟩    |
  

  
⟩                                     (3.9)

 Similarly to the perfect lattice. One can write 

Ohm's and Kirchhoff's law's for perturbed lattice as 

   ⟩    |
  

  
⟩                                    (3.10 

Where   is the lattice Laplacian operator for the perturbed 

lattice. 

                                                                  (3.11)   

One can see that the operator   is decomposed into two 

parts    associated with the perfect lattice and    

corresponding to the perturbation [16]. 

The Green's function  for perturbed lattice is defined by  

                                                      (3.12)    

Using Eqs.(3.10) and (3.12), one obtains  

  ⟩    |
  

  
⟩                                                 (3.13)     

 To calculate the inductance between sites  ⃗  and  ⃗  we 

assume that a current 
  

  
 enter at site  ⃗  and  

  

  
  exists at 

site  ⃗ .The currents are zero at all other lattice points. 

Hence, the current at lattice points  ⃗  is written as 

  (  ⃗ )

  
 

  

  
(         )                                   (3.14)   

And the potential at lattice point  ⃗  is  

 ( ⃗ )  ⟨   ⟩   ⟨ | |
  

  
⟩   ∑ ⟨     ⟩ ⟨ |

  

  
⟩   
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 ( ⃗ )   ∑  (   ) 
  ( ⃗ ) 

  
                 (3.15)   

The substitution of Eq. (3.14) into Eq. (3.15) yields  

 ( ⃗ )   
  

  
∑  (   )(         )   

  
  

  
( (   )   (   ) )                              (3.16)   

The inductance between sites  ⃗  and  ⃗  is given by  

 (   )  
 ( ⃗ )  ( ⃗ )

  

  

   

 (   )   [ (   )   (   )   (   )      )     (3.17)  

Notice that the perturbation destroyed the translational 

symmetry in the perturbed lattice (i.e.  (   )   (   ), but 

 (   )is still a symmetric matrix (i.e.  (   )   (   )). 

So Eq.(3.17), becomes 

 (   )   [ (   )   (   )    (   )       (3.18)   

Now, our aim is to calculate Green's function G. using 

Eq's.(2.15), (3.11) and (3.12) for Green's function G 

becomes  

  (      )
                                               (3.19)   

Rewriting the above equation we obtain the following 

Dyson's equation 

                                 (3.20)  

Green's function   can be calculated by expanding 

(      )
   in Eq.(3.19) or solving Dyson's equation 

(3.20) by iteration to obtain an infinite geometric series: 

                                        

                                                               (3.21) 

Because of simple from of   , the summation in the above 

equation can be performed exactly. 

By substituting Eq.(3.5) in (3.21), we obtain  

          ⟩⟨           ⟩⟨      ⟩⟨        

          ⟩[   ⟨      ⟩  ( ⟨      ⟩)  

  
0Gx   

          ⟩ *
 

   ⟨      ⟩
+ 〈    

      (3.22)                     

                                           

Where we have assumed that   (  
  ) exists and the 

denominator in the above equation is never equal to zero.  

Inserting Eq.(3.6) into Eq.(3.22) leads to the Green's 

function 

     
(   )  (   ⟩    ⟩)(⟨    ⟨   )  

  (   )(⟨    ⟨   )  (   ⟩    ⟩)
      (3.23) 

The matrix element of  (   )can be written in terms of the 

matrix elements of     

 (   )    (   )  
(   )[  (    )   (    ) [  (    )   (    ) 

   (   )[  (     )   (     ) 
    

         (3.24)    

Where we have used the symmetry properties of lattice 

Green's function for a pure lattice: 

  (   )    (   )    and    (   )    (   )  

From Eqs.(3.18) and (3.24),the inductance between sites  ⃗  
and  ⃗  can be obtained in terms of    as 

 (   )  [  (   )    (   )  
 (   )[  (    )   (    )   (    )   (    )  

   (   )[  (     )   (      
                 (3.25)       

Using Eq.(2.21),the above formula can be expressed in 

terms of the inductance of the perfect lattice    as 

 (     )    (   )  
(   )[  (    )   (    )   (    )   (    )  

 [   (   )  (     ) 
     

            (3.26)  

Now Eq.(3.26) is the final result for the inductance 

between two arbitrary lattice sites  ⃗  and  ⃗ . 

In any finite or infinite network, in which the inductance   

between the sites  ⃗   and  ⃗   bond (     ) is replaced by 

inductance  ,Eq.(3.26) is valid for any lattice structure in 

which each unit cell has only one lattice site.  

It is worth mentioning that when      , (   ), the 

problem reduced to the perfect case, we get 

 (   )    (   )                       (3.27)   

Now we compute the inductance between two sites  ⃗   and 

 ⃗   for a perturbed lattice. By Eq.(3.26), the inductance 

across the substitutional inductance is 

 (       )    (     )  
(   )[  (     )   (     )      

 [   (   )  (     ) 
  

 
    (     )

   (   )  (     )
                                                (3.28)   

4. Single Broken Inductance 

As an example (see Fig.2), consider the infinite triangular 

arrays of identical inductors  , with a broken bond. 
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Figure 2 Perturbation of a triangular lattice of identical inductors L with a broken bond between sites  ⃗⃗   and  ⃗⃗   in a 

perfect lattice 

 

(missing bond) between sites  ⃗   and  ⃗   in a perfect lattice 

From section (3), specifically Eq.(3.26) where   goes to 

infinity the problem is reduced to the broken bond case 

(Cserti, et al, 2002), and so we get  

 (   )  

  (     )  
[  (    )   (    )   (    )   (    )  

 [    (     ) 
         (   )                                                                                                                              

Using Eq.(3.46), the inductance across the broken bond is 

 (   )    (     )  
[  (    )   (     )      

 [    (     ) 
  

 
   (     )

    (     )
                                                   (4.2)   

As an example, consider the broken bond inductance between 

introduced between    (   ) and    (   ). 

 (     )

   (   )  
[  (   )    (    )    (   )    (   )  

 [    (   ) 

          

The results of calculation are listed in Table (3) for an infinite 

perturbed lattice. 

5. RESULTS AND DISCUSSION  
This section is devoted to discuss the result of the inductance 

for the triangular lattice. The theoretical results of the 

inductance perturbed triangular network are compared with 

those for the perfect network (Table1). Tables 2 and 3 show 

the calculated inductance between the sites ri=(0,0) and rj 

=(jx,jy)  when the inductor between the sites ri0=(0,0) and 

rj0=(1,0) is replaced by L'=2L and L'=1/2L respectively.  In 

the case of substitutional single inductance, Figures (3) and 

(4) show the theoretical inductance for the perfect and the 

perturbed (i.e. substitutional inductance case) infinite 

triangular lattice between the origin and the site    (    )  

as function of    .  

Figures (3) and (4) shows that the inductance of the perturbed 

lattice not symmetric in the direction of the perturbation. 

Also, it is divergent for large values of   . One can see from 

Figure (4) that the effective inductance L(i,j) in the perfect 

lattice when the substitutional inductance L; is larger than L. 

we see from Fig. (5) that the inductance L(i,j)  is smaller in 

the perturbed lattice than L0(i,j) in perfect lattice when the 

substitutional inductance L' is smaller than L. this is obvious 

from Eq,(3.26) 

In the case of broken bond inductance, table 4 shows the 

calculated inductance  when the bond is broken  between the 

sites ri0=(0,0) and rj0=(1,0), Figure (5) illustrates the 

theoretical inductance for the perfect and perturbed (i.e. 

broken bond inductance case) infinite triangular lattices 

between the origin and the site (    ) as a function of    . The 

Figure (5) shows that the inductance of the perturbed lattice is 

not symmetric in the direction of the perturbation. Also it is 

divergent for large values of    . 

 

5. CONCLUSIONS 
This work has aimed at calculating the inductance between 

two arbitrary points in an infinite network of identical 

inductors for a triangular network, theoretically, for both 

perfect and perturbed cases. 

Derivation of analytical expressions for the lattice Green's 

function and the inductance of the perfect and perturbed 

infinite networks .A formula for the inductance for a perfect 

2-D triangular lattice is derived by solving the integral of 

Eq.(2.23).some recurrence relations for a perfect triangular 

that allow the inductance calculation for arbitrary nodes are 

derived. 

Expressions for the Green's function and the inductance for a 

perturbed lattice are given in terms of  those for perfect lattice 

by solving Dyson's equation exactly .These expressions for 
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Figure (3) 

The theoretical inductance in terms of L of the perturbed (circles) and 

the perfect (squares) infinite triangular lattice between the origin and 

the site   (    )  as function of    when substitutional inductance 

L'=2L is inserted between    (   ) and    (   )  
 

Inductance is valid for any perturbed lattice structure either 

infinite or infinite in which each unit cell has only one lattice 

point . 

We observe that the effective inductance between any two 

nodes in the perfect and perturbed finite networks is larger 

than that in the corresponding infinite network .In the case of 

substitutional inductance, the effective inductance between 

any two nodes in the perturbed lattice is larger (smaller) than 

that in the perfect lattice if the substitutional inductance is 

larger (smaller) than L . In the case of a broken bond the 

effective inductance between any two nodes in the perturbed 

lattice is always larger than that in the perfect case. As 

another example, the subtitutional is         introduced 

between nodes    (   ) . the inductance between the origin 

and the sites   (     ) are listed in table (2).  

 

  

Figure (4) 

The theoretical inductance in terms of L of the perturbed (circles) and 

the perfect (squares) infinite triangular lattice between the origin and 

the site   (    )  as function of    when substitutional inductance 

L'=1/2L is inserted between    (   ) and    (   ) 

Figure (5) 

The theoretical inductance in units of L of the perturbed (circles) and 

the perfect (squares) infinite triangular lattice are calculated between 

the sites  ⃗⃗  (   ) and   (    ) as a function of    when the broken 

bond   is between  ⃗⃗     (   ) and  ⃗⃗   (   ) 

 

Table (1) 

Numerical Values of the inductance in unit of L for an infinite perfect triangular lattice.    

The site 

(i,j) 

The value of 
 (   )

 
 

The site 

(i,j) 

The value of 
 (   )

 
 

Infinite lattice Infinite lattice 
(0,0) 0 (0,0) 0 

(1,0) 0.3333 (-1,0) 0.3333 

(2,0) 0.4614 (-2,0) 0.4614 

(3,0) 0.5362 (-3,0) 0.5362 

(4,0) 0.5892 (-4,0) 0.5892 

(5,0) 0.6302 (-5,0) 0.6302 

(6,0) 0.6637 (-6,0) 0.6637 

(7,0) 0.6920 (-7,0) 0.6920 

(8,0) 0.7166 (-8,0) 0.7166 

(9,0) 0.7382 (-9,0) 0.7382 

(10,0) 0.7576 (-10,0) 0.7576 

Table (2) 

Calculated equivalent inductance in terms of   between the origin and the site   (     ) for an infinite perturbed triangular  

lattice: substitutional inductance       is inserted between the site   (       )  (   ) and    (       )  (   )  

The site 

(i,j) 

The value of 
 (   )

 
 

The site 

(i,j) 

The value of 
 (   )

 
 

Infinite lattice Infinite lattice 

(0,0) 0 (0,0) 0 

(1,0) 0.39995 (-1,0) 0.33962 

(2,0) 0.49333 (-2,0) 0.47142 

(3,0) 0.56118 (-3,0) 0.54798 

(4,0) 0.61158 (-4,0) 0.60202 

(5,0) 0.65121 (-5,0) 0.64368 

0

0.5

1

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

L(
I,

j)
/L

 

The Site 

Perfect infinite triangular lattice

Pertrubed infinite triangular lattice

0

0.5

1

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

L(
I,

j)
/L

 

The Site 

Perfect infinite triangular lattice

perturbed infinite triangular lattice

0

1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

L(
I,

j)
/L

 

The Site 

Perfect infinite triangular lattice

perturbed infinite triangular lattice
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(6,0) 0.68388 (-6,0) 0.67765 

(7,0) 0.71161 (-7,0) 0.70629 

(8,0) 0.73581 (-8,0) 0.73117 

(9,0) 0.75709 (-9,0) 0.75298 

(10,0) 0.77626 (-10,0) 0.77256 

Table (3) 

Calculated equivalent inductance in terms of   between the origin and the site   (     ) for an infinite perturbed triangular 

 lattice: substitutional inductance         is inserted between the site   (       )  (   ) and    (       )  (   )  

The site 

(i,j) 

The value of 
 (   )

 
 

The site 

(i,j) 

The value of 
 (   )

 
 

Infinite lattice Infinite lattice 

(0,0) 0 (0,0) 0 

(1,0) 0.24998 (-1,0) 0.32540 

(2,0) 0.42148 (-2,0) 0.44887 

(3,0) 0.50497 (-3,0) 0.52147 

(4,0) 0.56122 (-4,0) 0.57318 

(5,0) 0.60393 (-5,0) 0.61335 

(6,0) 0.63847 (-6,0) 0.64626 

(7,0) 0.66748 (-7,0) 0.67413 

(8,0) 0.69258 (-8,0) 0.69838 

(9,0) 0.71548 (-9,0) 0.71972 

(10.0) 0.73427 (-10.0) 0.73890 

Table (4) 

Calculated equivalent inductance in terms of   between the origin and the site   (     ) for an infinite perturbed triangular 

 lattice: the broken inductance between the site (       )  (   ) and    (       )  (   )  

The site 

(i,j) 

The value of 
 (   )

 
 

The site 

(i,j) 

The value of 
 (   )

 
 

Infinite lattice Infinite lattice 

(0,0) 0 (0,0) 0 

(1,0) 0.49994 (-1,0) 0.34909 

(2,0) 0.54123 (-2,0) 0.48646 

(3,0) 0.59865 (-3,0) 0.56566 

(4,0) 0.64516 (-4,0) 0.62124 

(5,0) 0.68274 (-5,0) 0.66390 

(6,0) 0.71415 (-6,0) 0.69858 

(7,0) 0.74103 (-7,0) 0.72773 

(8,0) 0.76463 (-8,0) 0.75303 

(9,0) 0.78543 (-9,0) 0.77515 

(10,0) 0.80425 (-10.0) 0.9889 
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